Our aim is to introduce a new notion of unconditionallity, in the context of polynomials in Banach spaces, that looks directly to the polynomial topology defined on the involved spaces. This notion allows us to generalize some well-known relations of duality that appear in the linear context.
@article{urn:eudml:doc:38535, title = {Unconditionally convergent polynomials in Banach spaces and related properties.}, journal = {Extracta Mathematicae}, volume = {12}, year = {1997}, pages = {305-307}, zbl = {0933.46041}, mrnumber = {MR1627517}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38535} }
Fernández Unzueta, M.ª Teresa. Unconditionally convergent polynomials in Banach spaces and related properties.. Extracta Mathematicae, Tome 12 (1997) pp. 305-307. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38535/