Let f be a C1 function defined over Rn and definable in a given o-minimal structure M expanding the real field. We prove here a gradient-like inequality at infinity in a neighborhood of an asymptotic critical value c. When f is C2 we use this inequality to discuss the trivialization by the gradient flow of f in a neighborhood of a regular asymptotic critical level.
@article{urn:eudml:doc:38179, title = {A gradient inequality at infinity for tame functions.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {18}, year = {2005}, pages = {493-501}, zbl = {1098.37011}, mrnumber = {MR2166522}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38179} }
D'Acunto, Didier; Grandjean, Vincent. A gradient inequality at infinity for tame functions.. Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005) pp. 493-501. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38179/