A gradient inequality at infinity for tame functions.
D'Acunto, Didier ; Grandjean, Vincent
Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005), p. 493-501 / Harvested from Biblioteca Digital de Matemáticas

Let f be a C1 function defined over Rn and definable in a given o-minimal structure M expanding the real field. We prove here a gradient-like inequality at infinity in a neighborhood of an asymptotic critical value c. When f is C2 we use this inequality to discuss the trivialization by the gradient flow of f in a neighborhood of a regular asymptotic critical level.

Publié le : 2005-01-01
DMLE-ID : 1010
@article{urn:eudml:doc:38179,
     title = {A gradient inequality at infinity for tame functions.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {18},
     year = {2005},
     pages = {493-501},
     zbl = {1098.37011},
     mrnumber = {MR2166522},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38179}
}
D'Acunto, Didier; Grandjean, Vincent. A gradient inequality at infinity for tame functions.. Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005) pp. 493-501. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38179/