The existence of common zero of a family of polynomials has led to the study of inertial forms, whose homogeneous part of degree 0 constitutes the ideal resultant. The Kozsul and Cech cohomologies groups play a fundamental role in this study. An analogueous of Hurwitz theorem is given, and also, one finds a N. H. McCoy theorem in a particular case of this study.
@article{urn:eudml:doc:38163, title = {Formes d'inertie et complexe de Koszul associ\'es \`a des polyn\^omes plurihomog\`enes.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {18}, year = {2005}, pages = {243-260}, zbl = {1095.13020}, mrnumber = {MR2135541}, language = {fr}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38163} }
Awane, Azzouz; Chkiriba, Abdelouahab; Goze, Michel. Formes d'inertie et complexe de Koszul associés à des polynômes plurihomogènes.. Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005) pp. 243-260. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38163/