Sharp edge-homotopy on spatial graphs.
Nikkuni, Ryo
Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005), p. 181-207 / Harvested from Biblioteca Digital de Matemáticas

A sharp-move is known as an unknotting operation for knots. A self sharp-move is a sharp-move on a spatial graph where all strings in the move belong to the same spatial edge. We say that two spatial embeddings of a graph are sharp edge-homotopic if they are transformed into each other by self sharp-moves and ambient isotopies. We investigate how is the sharp edge-homotopy strong and classify all spatial theta curves completely up to sharp edge-homotopy. Moreover we mention a relationship between sharp edge-homotopy and delta edge (resp. vertex)-homotopy on spatial graphs.

Publié le : 2005-01-01
DMLE-ID : 1001
@article{urn:eudml:doc:38159,
     title = {Sharp edge-homotopy on spatial graphs.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {18},
     year = {2005},
     pages = {181-207},
     zbl = {1080.57003},
     mrnumber = {MR2135538},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:38159}
}
Nikkuni, Ryo. Sharp edge-homotopy on spatial graphs.. Revista Matemática de la Universidad Complutense de Madrid, Tome 18 (2005) pp. 181-207. http://gdmltest.u-ga.fr/item/urn:eudml:doc:38159/