The harmonic evolute of a surface in Minkowski 3-space
Šipuš, Željka Milin ; Volenec, Vladimir
Mathematical Communications, Tome 19 (2014) no. 1, p. 43-55 / Harvested from Mathematical Communications
In this paper we describe harmonic evolutes of surfaces in Minkowski 3-space. In particular, we study properties of harmonic evolutes of constant mean curvature surfaces and their relation to parallel surfaces. Furthermore, we study harmonic evolutes of surfaces of revolution.
Publié le : 2014-06-10
Classification:  harmonic evolute; focal set; parallel surface; Minkowski 3-space,  53A35; 53B30
@article{mc566,
     author = {\v Sipu\v s, \v Zeljka Milin and Volenec, Vladimir},
     title = {The harmonic evolute of a surface in Minkowski 3-space},
     journal = {Mathematical Communications},
     volume = {19},
     number = {1},
     year = {2014},
     pages = { 43-55},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc566}
}
Šipuš, Željka Milin; Volenec, Vladimir. The harmonic evolute of a surface in Minkowski 3-space. Mathematical Communications, Tome 19 (2014) no. 1, pp.  43-55. http://gdmltest.u-ga.fr/item/mc566/