Existence of three solutions for Kirchhoff nonlocal operators of elliptic type
Nyamoradi, Nemat
Mathematical Communications, Tome 18 (2013) no. 1, p. 489-502 / Harvested from Mathematical Communications
In this paper we prove the existence of at least three solutionsto the following Kirchhoff nonlocal fractional equation:\begin{equation*} \begin{cases} M \left (\int_{\mathbb{R}^n\times \mathbb{R}^n} |u (x) - u (y)|^2 K (x - y) d x d y - \int_\Omega |u (x)|^2 d x \right) ((- \Delta)^s u - \lambda u) \\ \hspace{2cm} \in \theta (\partial j (x, u (x)) + \mu \partial k (x, u (x))), & \textrm{in}\;\;   \Omega,\\ u = 0, & \textrm{in}\;\;   \mathbb{R}^n \setminus \Omega, \end{cases}\end{equation*}where $(- \Delta)^s$ is the fractional Laplace operator, $s \in(0, 1)$ is a fix, $\lambda, \theta, \mu$ are real parameters and$\Omega$ an open bounded subset of $\mathbb{R}^n$, $n > 2 s$, withLipschitz boundary. The approach is fully based on a recent threecritical points theorem of Teng [K. Teng, Two nontrivial solutionsfor hemivariational inequalities driven by nonlocal ellipticoperators, Nonlinear Anal. (RWA) 14 (2013) 867-874].
Publié le : 2013-11-12
Classification:  Nonlocal fractional equation, Nonsmooth critical point, Variational methods, Locally Lipschitz, Three solutions.,  49J52; 35A15; 34A08
@article{mc341,
     author = {Nyamoradi, Nemat},
     title = {Existence of three solutions for Kirchhoff nonlocal operators of elliptic type},
     journal = {Mathematical Communications},
     volume = {18},
     number = {1},
     year = {2013},
     pages = { 489-502},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc341}
}
Nyamoradi, Nemat. Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Mathematical Communications, Tome 18 (2013) no. 1, pp.  489-502. http://gdmltest.u-ga.fr/item/mc341/