Willmore spacelike submanifolds in a Lorentzian space form $N^{n+p}_p(c)$
Shu, Shichang ; Chen, Junfeng
Mathematical Communications, Tome 19 (2014) no. 1, p. 301-319 / Harvested from Mathematical Communications
Let $N^{n+p}_p(c)$ be an $(n+p)$-dimensional connected Lorentzian space form of constant sectional curvature $c$ and $\varphi: M \rightarrow N^{n+p}_p(c)$ an $n$-dimensional spacelike submanifold in $N^{n+p}_p(c)$. The immersion $\varphi: M \rightarrow N^{n+p}_p(c)$ is called a Willmore spacelike submanifold in $N^{n+p}_p(c)$ if it is a critical submanifold to the Willmore functional\[W(\varphi)=\int_M\rho^ndv=\int_M(S-nH^2)^{\frac{n}{2}}dv,\]where $S$, $H$ and $\rho^2$ denote the norm square of the second fundamental form, the mean curvature and the non-negative function$\rho^2=S-nH^2$ of $M$. In this article, by calculating the first variation of $W(\varphi)$, we obtain the Euler-Lagrange equation of $W(\varphi)$ and prove some rigidity theorems for $n$-dimensional Willmore spacelike submanifolds in $N^{n+p}_p(c)$.
Publié le : 2014-10-26
Classification:  Willmore spacelike submanifold, Lorentzian space form, Euler-Lagrange equation, totally umbilical,  53C42, 53C40
@article{mc332,
     author = {Shu, Shichang and Chen, Junfeng},
     title = {Willmore spacelike submanifolds in a Lorentzian space form $N^{n+p}\_p(c)$},
     journal = {Mathematical Communications},
     volume = {19},
     number = {1},
     year = {2014},
     pages = { 301-319},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc332}
}
Shu, Shichang; Chen, Junfeng. Willmore spacelike submanifolds in a Lorentzian space form $N^{n+p}_p(c)$. Mathematical Communications, Tome 19 (2014) no. 1, pp.  301-319. http://gdmltest.u-ga.fr/item/mc332/