Cubic surfaces and q-numerical ranges
Chien, Mao-Ting ; Nakazato, Hiroshi
Mathematical Communications, Tome 18 (2013) no. 1, p. 133-141 / Harvested from Mathematical Communications
Let  $A$ be an $n \times n$ complex matrix and  $0\leq q \leq 1$. The boundary of the $q$-numerical range  of $A$ is the orthogonal projection of a hypersurface defined by the dual surface of the homogeneous polynomial\[F(t, x, y, z)= {\rm det}(t\, I_n +x(A +A^*)/2+ y(A -A^*)/(2i)  +z \, A^* A).\]We construct different types of cubic surfaces $S_F$ corresponding to the homogeneous polynomial $F(t, x, y, z)$ induced by some $3\times 3$ matrices. The degree of the boundary of the Davis-Wielandt shell of a $3 \times 3$ upper triangular matrix is determined by the cubic surface~$S_F$.
Publié le : 2013-05-04
Classification: 
@article{mc233,
     author = {Chien, Mao-Ting and Nakazato, Hiroshi},
     title = {Cubic surfaces and q-numerical ranges},
     journal = {Mathematical Communications},
     volume = {18},
     number = {1},
     year = {2013},
     pages = { 133-141},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc233}
}
Chien, Mao-Ting; Nakazato, Hiroshi. Cubic surfaces and q-numerical ranges. Mathematical Communications, Tome 18 (2013) no. 1, pp.  133-141. http://gdmltest.u-ga.fr/item/mc233/