Positive solutions for the system of higher order singular nonlinear boundary value problems
Prasad, Kapula Rajendra ; Kameswararao, Allaka
Mathematical Communications, Tome 18 (2013) no. 1, p. 49-60 / Harvested from Mathematical Communications
In this paper, by using  Krasnosel'skii fixed point theorem and under suitable conditions, we present the existence of  single and multiple positive solutions to the following systems$$\begin{aligned}(-1)^mu^{(2m)}&=\lambda f(t, u(t), v(t))=0,~~~~ t\in[a, b],\\(-1)^nv^{(2n)}&=\mu g(t, u(t), v(t))=0,~~~~ t\in[a, b],\\u^{(2i)}(a)&=u^{(2i)}(b)=0,~~~~0\leq i\leq m-1,\\v^{(2j)}(a)&=v^{(2j)}(b)=0,~~~~0\leq j\leq n-1,\end{aligned}$$where  $\lambda, \mu>0, m,n\in \N$. We derive two explicit eigenvalue intervals of  $\lambda$  and $\mu$ for  the existence of at least onepositive solution  and the existence of at least two  positive solutions for the above higher order two-point boundary value problem.
Publié le : 2013-05-04
Classification: 
@article{mc224,
     author = {Prasad, Kapula Rajendra and Kameswararao, Allaka},
     title = {Positive solutions for the system of higher order singular nonlinear boundary value problems},
     journal = {Mathematical Communications},
     volume = {18},
     number = {1},
     year = {2013},
     pages = { 49-60},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc224}
}
Prasad, Kapula Rajendra; Kameswararao, Allaka. Positive solutions for the system of higher order singular nonlinear boundary value problems. Mathematical Communications, Tome 18 (2013) no. 1, pp.  49-60. http://gdmltest.u-ga.fr/item/mc224/