On equiform Darboux helices in Galilean 3-space
Öztürk, Ufuk ; Betül Koç Öztürk, Esra ; Nešović, Emilija Milojko
Mathematical Communications, Tome 23 (2018) no. 2, p. 145-159 / Harvested from Mathematical Communications
In this paper, we define   equiformDarboux helices in Galilean space $\mathbb{G}_{3}$  and  obtain their explicit parameter equations. We show that equiform Darboux helices have only non-isotropic axis and   characterize equiform Darboux vectors of  equiform Darboux helices in terms of equiform rectifying curves.  We prove that an equiform Darboux vector of  an equiform Darboux helix $\alpha$ is an equiform Darboux helix, if an admissible curve $\alpha$ is a rectifying curve. We also prove that there are no equiform curves of the constant precession and give some examples of the equiform Darboux helices.
Publié le : 2018-04-11
Classification:  equiform geometry, equiform Darboux vector, Galilean 3-space,  53A20, 53A35
@article{mc2106,
     author = {\"Ozt\"urk, Ufuk and Bet\"ul Ko\c c \"Ozt\"urk, Esra and Ne\v sovi\'c, Emilija Milojko},
     title = {On equiform Darboux helices in Galilean 3-space},
     journal = {Mathematical Communications},
     volume = {23},
     number = {2},
     year = {2018},
     pages = { 145-159},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc2106}
}
Öztürk, Ufuk; Betül Koç Öztürk, Esra; Nešović, Emilija Milojko. On equiform Darboux helices in Galilean 3-space. Mathematical Communications, Tome 23 (2018) no. 2, pp.  145-159. http://gdmltest.u-ga.fr/item/mc2106/