Perfect 1-error-correcting Hurwitz weight codes
Güzeltepe, Murat ; Altınel, Alev
Mathematical Communications, Tome 22 (2017) no. 1, p. 265-272 / Harvested from Mathematical Communications
Let $\pi$ be a Hurwitz prime and $p = \pi \pi ^\star$. In this paper, we construct perfect 1-error-correcting codes in $\cal{H}_{\pi}^n$ for every prime number $p > 3$, where $\cal{H}$ denotes the set of Hurwitz integers.
Publié le : 2017-08-13
Classification:  Block codes, Hurwitz distance, perfect code,  94B05, 94B60
@article{mc2019,
     author = {G\"uzeltepe, Murat and Alt\i nel, Alev},
     title = {Perfect 1-error-correcting Hurwitz weight codes},
     journal = {Mathematical Communications},
     volume = {22},
     number = {1},
     year = {2017},
     pages = { 265-272},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc2019}
}
Güzeltepe, Murat; Altınel, Alev. Perfect 1-error-correcting Hurwitz weight codes. Mathematical Communications, Tome 22 (2017) no. 1, pp.  265-272. http://gdmltest.u-ga.fr/item/mc2019/