On the hyper-order of solutions of nonhomogeneous linear dierential equations
Nour El Imane Khadidja, Cheriet ; Karima, Hamani
Mathematical Communications, Tome 22 (2017) no. 1, p. 135-149 / Harvested from Mathematical Communications
In this paper, we study the hyper-order of solutions of   higher order linear differential equation\begin{equation*} f^{(k)}+A_{k-1}(z)f^{(k-1)}+\ldots A_{1}(z)f^{\prime }+A_{0}(z)f=H(z),\end{equation*}where $k\geq 2$ is an integer, $A_{j}\left( z\right) $ $(j=0,1,\ldots,k-1)$ and $H\left( z\right) $ $\left( \not\equiv 0\right) $ are entire functions or polynomials. We improve previous results given by Xu and Cao.
Publié le : 2017-02-17
Classification:  Linear dierential equation; Entire function,;Hyper-order.,  34M10; 30D35
@article{mc1508,
     author = {Nour El Imane Khadidja, Cheriet and Karima, Hamani},
     title = {On the hyper-order of solutions of nonhomogeneous linear dierential equations},
     journal = {Mathematical Communications},
     volume = {22},
     number = {1},
     year = {2017},
     pages = { 135-149},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc1508}
}
Nour El Imane Khadidja, Cheriet; Karima, Hamani. On the hyper-order of solutions of nonhomogeneous linear dierential equations. Mathematical Communications, Tome 22 (2017) no. 1, pp.  135-149. http://gdmltest.u-ga.fr/item/mc1508/