Perfect 1-error-correcting Lipschitz weight codes
Heden, Olof ; Güzeltepe, Murat
Mathematical Communications, Tome 21 (2016) no. 1, p. 23-30 / Harvested from Mathematical Communications
Let $\pi$ be a Lipschitz prime and $p=\pi\pi^\star$. Perfect 1-error-correcting codes in $H(\mathbb{Z})_\pi^n$ are constructed for every prime number $p\equiv1(\bmod\;4)$. This completes a result of the authors in an earlier work, \emph{Perfect Mannheim, Lipschitz and Hurwitz weight codes},  (Mathematical Communications, Vol 19, No 2, pp. 253 -- 276 (2014)), where a construction is given in the case $p\equiv3\,(\bmod\;4)$.
Publié le : 2016-03-09
Classification:  Perfect Lipschitz weight codes,  94B60
@article{mc1271,
     author = {Heden, Olof and G\"uzeltepe, Murat},
     title = {Perfect 1-error-correcting Lipschitz weight codes},
     journal = {Mathematical Communications},
     volume = {21},
     number = {1},
     year = {2016},
     pages = { 23-30},
     language = {eng},
     url = {http://dml.mathdoc.fr/item/mc1271}
}
Heden, Olof; Güzeltepe, Murat. Perfect 1-error-correcting Lipschitz weight codes. Mathematical Communications, Tome 21 (2016) no. 1, pp.  23-30. http://gdmltest.u-ga.fr/item/mc1271/