Probabilistic properties of the Béta-ARCH model
Diebolt, Jean ; Guegan, Dominique
HAL, halshs-00199490 / Harvested from HAL
In the present paper we consider the main probabilistic properties of the Markov chain Xt=aXt-1+[a0+(a1+(Xt-1)++a1-(Xt-1) -)2β]1/2εt , that we call the β-ARCH model. We examine the inevitability, irreducibility, Harris recurrence, ergodicity, geometric ergodicity, α-mixing, existence and nonexistence of finite moments and exponential moments of some order and sharp upper bounds for the tails of the stationary density of the process {Xt} in terms of the common density of the εt's.
Publié le : 1994-01-05
Classification:  autoregressive,  Markov chain,  invertibility,  ergodicity,  mixing,  tail of the stationary density,  ARCH model,  nonlinear time series,  autoregressive.,  [SHS.ECO]Humanities and Social Sciences/Economies and finances,  [MATH.MATH-PR]Mathematics [math]/Probability [math.PR],  [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
@article{halshs-00199490,
     author = {Diebolt, Jean and Guegan, Dominique},
     title = {Probabilistic properties of the B\'eta-ARCH model},
     journal = {HAL},
     volume = {1994},
     number = {0},
     year = {1994},
     language = {en},
     url = {http://dml.mathdoc.fr/item/halshs-00199490}
}
Diebolt, Jean; Guegan, Dominique. Probabilistic properties of the Béta-ARCH model. HAL, Tome 1994 (1994) no. 0, . http://gdmltest.u-ga.fr/item/halshs-00199490/