In 2005, [2] Philippe Guillot presented a new construction of Boolean functions using linear codes as an extension of Maiorana-McFarland's construction of bent functions. In this paper, we study a new family of Boolean functions with cryptographically strong properties such as non-linearity, propagation criterion, resiliency and balance. The construction of cryptographically strong boolean functions is a daunting task and there is currently a wide range of algebraic techniques and heuristics for constructing such functions , however these methods can be complex, com-putationally difficult to implement and not always produce a sufficient variety of functions. We present in this paper a construction of Boolean functions using algebraic codes following Guillot's work.