Fonctions de Mathieu et polynômes de Klein-Gordon
Jager, Lisette
HAL, hal-01881742 / Harvested from HAL
. Mathieu functions were first introduced to solve the Dirichlet problem in an ellipse. The coefficients of their Fourier-series expansions satisfy three-term recurrence relations, for which no explicit solution is known. We show the link between these coefficients and polynomials which show up in A. Unterberper's Klein-Gordon calculus, a relativistic substitute of the Weyl calculus.
Publié le : 1997-07-04
Classification:  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
@article{hal-01881742,
     author = {Jager, Lisette},
     title = {Fonctions de Mathieu et polyn\^omes de Klein-Gordon},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-01881742}
}
Jager, Lisette. Fonctions de Mathieu et polynômes de Klein-Gordon. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-01881742/