On certain alternating series involving zeta and multiple zeta values
Coppo, Marc-Antoine
HAL, hal-01735381 / Harvested from HAL
In this article, we consider various generalizations of Euler's famous relation\[\gamma = \sum_{n\geq 2} (-1)^n \frac{\zeta(n)}{n}\]linking Euler's constant $\gamma$ to special values of the Riemann zeta function at positive integers. Among other things, we highlight the existence of a very similar relation for the Apostol-Vu harmonic zeta function which have never been noticed before.
Publié le : 2018-10-29
Classification:  Euler's constant,  first Stieltjes constant,  Riemann zeta function,  har-monic zeta function,  Stirling numbers,  Bernoulli numbers,  Bernoulli numbers of the second kind,  harmonic numbers,  multiple zeta values,  [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
@article{hal-01735381,
     author = {Coppo, Marc-Antoine},
     title = {On certain alternating series involving zeta and multiple zeta values},
     journal = {HAL},
     volume = {2018},
     number = {0},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01735381}
}
Coppo, Marc-Antoine. On certain alternating series involving zeta and multiple zeta values. HAL, Tome 2018 (2018) no. 0, . http://gdmltest.u-ga.fr/item/hal-01735381/