On fractional Hardy inequalities in convex sets
Brasco, Lorenzo ; Cinti, Eleonora
HAL, hal-01586181 / Harvested from HAL
We prove a Hardy inequality on convex sets, for fractional Sobolev-Slobodecki\u{\i} spaces of order $(s,p)$. The proof is based on the fact that in a convex set the distance from the boundary is a superharmonic function, in a suitable sense. The result holds for every $1
Publié le : 2018-08-04
Classification:  nonlocal operators,  Hardy inequality,  fractional Sobolev spaces,  39B72; 35R11, 46E35,  [MATH]Mathematics [math],  [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA],  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
@article{hal-01586181,
     author = {Brasco, Lorenzo and Cinti, Eleonora},
     title = {On fractional Hardy inequalities in convex sets},
     journal = {HAL},
     volume = {2018},
     number = {0},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01586181}
}
Brasco, Lorenzo; Cinti, Eleonora. On fractional Hardy inequalities in convex sets. HAL, Tome 2018 (2018) no. 0, . http://gdmltest.u-ga.fr/item/hal-01586181/