ORDINAL REAL NUMBERS 2. The arithmetization of order types
Kyritsis, Konstantinos,
HAL, hal-01512977 / Harvested from HAL
In this paper the main results are :Proofs that the ordinal real numbers are real closed fields and complete up-to-characteristic .They are also Dedekind ,and Archemidean complete fields .They are real formal power series fields and Pythagorean complete fields It is proved and discussed the K-fundamental arithmetisationand the binary arithmetisation of the order types .
Publié le : 1995-07-04
Classification:  real closed commutative fields,  Grothendick group,  Archemidean complete fields,  linearly ordered commutative fields,  full binary trees,  Subject Classification of AMS 03,04,08,13,46,  [MATH]Mathematics [math]
@article{hal-01512977,
     author = {Kyritsis, Konstantinos, },
     title = {ORDINAL REAL NUMBERS 2. The arithmetization of order types},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01512977}
}
Kyritsis, Konstantinos, . ORDINAL REAL NUMBERS 2. The arithmetization of order types. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-01512977/