Integrability and non-integrability in Hamiltonian mechanics
Kozlov, V.
HAL, hal-01349791 / Harvested from HAL
In 1834, Hamilton expressed the differential equations of classical mechanics, the Lagrange equations$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}$$ with $L:\mathbb{R}^n\times \mathbb R ^n \to \mathbb R$ in the "canonical form": $$\dot{q}=\frac{\partial H}{\partial p},\quad \dot{p}=- \frac{\partial H}{\partial q}$$ Here $p = \partial L/\partial \dot{q} \in \mathbb R^n$ is the generalized momentum and the Hamiltonian function $H= p\dot{q}- L\big|_{p,q}$ is the "total energy" of the mechanical system.
Publié le : 1983-07-04
Classification:  Hamiltonian system,  [MATH]Mathematics [math],  [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
@article{hal-01349791,
     author = {Kozlov, V.},
     title = {Integrability and non-integrability in Hamiltonian mechanics},
     journal = {HAL},
     volume = {1983},
     number = {0},
     year = {1983},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01349791}
}
Kozlov, V. Integrability and non-integrability in Hamiltonian mechanics. HAL, Tome 1983 (1983) no. 0, . http://gdmltest.u-ga.fr/item/hal-01349791/