Classification and construction of Quasisimple Lie algebras
Høegh-Krohn, Raphaël ; Torrésani, Bruno
HAL, hal-01304308 / Harvested from HAL
We study a class of (possibly intinite-dimensional) Lie algebras, called the Quasisimple Lie algebras (QSLA's), and generalizing semisimple and affine Kac-Mocady Lie algebras. They arc characterized by the existence of a finite-dimensional Carian subalgebra, a non-degenerate symmetric ad-invariant Killing form, and nilpcbtent rootspaces attached to non-isotropic roots. We are then able to derive a clasrification theorem for the possible irreducible elliptic quasisimple root systems; mon!over, we construct explicit realizations of some of them as (untwisted and twisted) current algebras, generalizing the afine loop algebras.
Publié le : 1990-07-04
Classification:  [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]
@article{hal-01304308,
     author = {H\o egh-Krohn, Rapha\"el and Torr\'esani, Bruno},
     title = {Classification and construction of Quasisimple Lie algebras},
     journal = {HAL},
     volume = {1990},
     number = {0},
     year = {1990},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01304308}
}
Høegh-Krohn, Raphaël; Torrésani, Bruno. Classification and construction of Quasisimple Lie algebras. HAL, Tome 1990 (1990) no. 0, . http://gdmltest.u-ga.fr/item/hal-01304308/