Maps between p-completions of the Clark-Erwing spaces.
WOJTKOWIAK, ZDZISLAW, JOZEF
HAL, hal-01293450 / Harvested from HAL
Let $\mathbf {Z}_p$ denote the ring of p-adic integers. Let $W\subset \mathrm {GL}(n,\mathbf {Z}_p)$ be a finite group such that p does not divide the order of W. The group W acts on $K((\mathbf {Z}_p)^n,2)$. Let X(W,p,n)p be the p-completion of the space $K((\mathbf {Z}_p)^n,2)\times _W EW$. We classify homotopy classes of maps between spaces X(W,p,n)p
Publié le : 1990-07-04
Classification:  [MATH]Mathematics [math],  [MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]
@article{hal-01293450,
     author = {WOJTKOWIAK, ZDZISLAW, JOZEF},
     title = { Maps between p-completions of the Clark-Erwing spaces. },
     journal = {HAL},
     volume = {1990},
     number = {0},
     year = {1990},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01293450}
}
WOJTKOWIAK, ZDZISLAW, JOZEF.  Maps between p-completions of the Clark-Erwing spaces. . HAL, Tome 1990 (1990) no. 0, . http://gdmltest.u-ga.fr/item/hal-01293450/