We prove a sufficient condition for the Jacobian problem in the settingof real, complex and mixed polynomial mappings. This follows from the study of thebifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
Publié le : 2014-07-04
Classification:
real and complex polynomial mappings,
bifurcation locus,
Jacobian problem,
Newton polyhedron,
regularity at infinity.,
14D06, 58K05, 57R45, 14P10, 32S20, 58K15,
[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT],
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG],
[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]
@article{hal-01253320,
author = {Tibar, Mihai and Chen, Ying and Dias, Luis Renato Gon\c calves and Takeuchi, Kiyoshi},
title = {Invertible polynomial mappings via Newton non-degeneracy},
journal = {HAL},
volume = {2014},
number = {0},
year = {2014},
language = {en},
url = {http://dml.mathdoc.fr/item/hal-01253320}
}
Tibar, Mihai; Chen, Ying; Dias, Luis Renato Gonçalves; Takeuchi, Kiyoshi. Invertible polynomial mappings via Newton non-degeneracy. HAL, Tome 2014 (2014) no. 0, . http://gdmltest.u-ga.fr/item/hal-01253320/