Ramanujan's lattice point problem, prime number theory and other remarks.
Ramachandra, K ; Sankaranarayanan, A ; Srinivas, K
HAL, hal-01109304 / Harvested from HAL
This paper gives results on four diverse topics. The first result is that the error term for the number of integers $2^u3^v \le n$ is $O((\log n)^{1-\delta})$ with $\delta=(2^{40}(\log3))^{-1}$, using a theorem of A. Baker and G. W\"ustholz. The second result is an averaged explicit formula\[\psi(x) = x-\frac{1}{T} \int_{T}^{2T} \left( \sum \limits_{|\gamma| \le \tau} \frac{x^{\rho}}{\rho} \right) \ d\tau+ O \left( \frac{\log x}{\log \frac{x}{T}}\cdot \frac{x}{T} \right)\]for $x \gg T \gg 1$. It then follows, by the Riemann hypothesis, that $\psi (x+h)-\psi (x)= h+ O \left ( h \lambda^{1/2} \right )$ if $h=\lambda x^{1/2} \log x$. The third theme tightens the $\log$ powers in the zero density bounds of Ingham and Huxley, and gives corollaries for the mean-value of $\psi (x+h)-\psi (x)-h$. The fourth remark concerns a hypothetical improvement in the constant 2 in the Brun-Titchmarsh theorem, averaged over congruence classes, and its consequence for $L \left ( 1,\chi \right )$.
Publié le : 1996-07-04
Classification:  average explicit formula,  zero-density bounds,  Brun-Titchmarsh Theorem,  [MATH]Mathematics [math]
@article{hal-01109304,
     author = {Ramachandra, K and Sankaranarayanan, A and Srinivas, K},
     title = {Ramanujan's lattice point problem, prime number theory and other remarks.},
     journal = {HAL},
     volume = {1996},
     number = {0},
     year = {1996},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01109304}
}
Ramachandra, K; Sankaranarayanan, A; Srinivas, K. Ramanujan's lattice point problem, prime number theory and other remarks.. HAL, Tome 1996 (1996) no. 0, . http://gdmltest.u-ga.fr/item/hal-01109304/