On Riemann zeta-function and allied questions-II
Balasubramanian, R ; Ramachandra, K
HAL, hal-01108757 / Harvested from HAL
In this paper, two conjectures on the mean value of Dirichlet polynomials are given and are shown to imply good lower bound for $\int_H^{T+H}\vert\zeta(\frac{1}{2}+it)^k\vert^2\,dt$, uniform in $k$ and independent of $T$.
Publié le : 1995-07-04
Classification:  short intervals,  Titchmarsh polynomial,  [MATH]Mathematics [math]
@article{hal-01108757,
     author = {Balasubramanian, R and Ramachandra, K},
     title = {On Riemann zeta-function and allied questions-II},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01108757}
}
Balasubramanian, R; Ramachandra, K. On Riemann zeta-function and allied questions-II. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-01108757/