On some over primes
Sander, J W
HAL, hal-01108738 / Harvested from HAL
It will be shown that, for any $\delta > 0$,\[{\sum_{p\leq n}}^* \; \frac{\log p}{p} = \frac{1}{2} \log n + O\Big((\log n)^{\frac{5}{6}+\delta}\Big),\]where (*) restricts the summation to those primes $p$, which satisfy $n = kp+r$ for some integers $k$ and $r$, $p/2 < r < p$. This result is connected with questionsconcerning prime divisors of binomial coefficients.
Publié le : 1994-07-04
Classification:  prime factors of binomial coefficients,  [MATH]Mathematics [math]
@article{hal-01108738,
     author = {Sander, J W},
     title = {On some over primes},
     journal = {HAL},
     volume = {1994},
     number = {0},
     year = {1994},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01108738}
}
Sander, J W. On some over primes. HAL, Tome 1994 (1994) no. 0, . http://gdmltest.u-ga.fr/item/hal-01108738/