On the zeros of a class of generalised Dirichlet series-IX
Balasubramanian, R ; Ramachandra, K
HAL, hal-01104799 / Harvested from HAL
In the present paper, the assumptions on the function $F(s)$ are more restrictive but the conclusions about the zeros are stronger in two respects: the lower bound for $\sigma$ can be taken closer to $\frac{1}{2}-C(\log\log T)(\log T)^{-1}$ and the lower bound for the number of zeros is like $T/\log\log\log T$.
Publié le : 1991-07-04
Classification:  Riemann zeta-function,  generalised Dirichlet series,  L-functions,  [MATH]Mathematics [math]
@article{hal-01104799,
     author = {Balasubramanian, R and Ramachandra, K},
     title = {On the zeros of a class of generalised Dirichlet series-IX},
     journal = {HAL},
     volume = {1991},
     number = {0},
     year = {1991},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01104799}
}
Balasubramanian, R; Ramachandra, K. On the zeros of a class of generalised Dirichlet series-IX. HAL, Tome 1991 (1991) no. 0, . http://gdmltest.u-ga.fr/item/hal-01104799/