An $\Omega$-result related to $r_4(n)$.
Adhikari, Sukumar Das ; Balasubramanian, R ; Sankaranarayanan, A
HAL, hal-01104372 / Harvested from HAL
Let $r_4(n)$ be the number of ways of writing $n$ as the sum of four squares. Set $P_4(x)= \sum \limits_{n\le x} r_4(n)-\frac {1}{2}\pi^2 x^2$, the error term for the average order of this arithmetical function. In this paper, following the ideas of Erd\"os and Shapiro, a new elementary method is developed which yields the slightly stronger result $P_4(x)= \Omega_{+}(x \log \log x)$. We also apply our method to give an upper bound for a quantity involving the Euler $\varphi$-function. This second result gives an elementary proof of a theorem of H. L. Montgomery
Publié le : 1989-07-04
Classification:  Omega results of the error terms,  arithmetical functions,  [MATH]Mathematics [math]
@article{hal-01104372,
     author = {Adhikari, Sukumar Das and Balasubramanian, R and Sankaranarayanan, A},
     title = {An $\Omega$-result related to $r\_4(n)$.},
     journal = {HAL},
     volume = {1989},
     number = {0},
     year = {1989},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01104372}
}
Adhikari, Sukumar Das; Balasubramanian, R; Sankaranarayanan, A. An $\Omega$-result related to $r_4(n)$.. HAL, Tome 1989 (1989) no. 0, . http://gdmltest.u-ga.fr/item/hal-01104372/