On $n$ numbers on a circle
Schinzel, Andrzej ; Misiurewicz, Michal
HAL, hal-01104323 / Harvested from HAL
Let $[a_1(0),\ldots,a_n(0)]$ be a real vector; define recursively $a_i(t+1)=|a_i(t)-a_{(i+1)}(t)|$. This paper is devoted to the study of $[a_1(t),\ldots,a_n(t)]$ for $t$ tending to infinity.
Publié le : 1988-07-04
Classification:  circle,  periodic orbits,  [MATH]Mathematics [math]
@article{hal-01104323,
     author = {Schinzel, Andrzej and Misiurewicz, Michal},
     title = {On $n$ numbers on a circle},
     journal = {HAL},
     volume = {1988},
     number = {0},
     year = {1988},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01104323}
}
Schinzel, Andrzej; Misiurewicz, Michal. On $n$ numbers on a circle. HAL, Tome 1988 (1988) no. 0, . http://gdmltest.u-ga.fr/item/hal-01104323/