A remark on $\zeta(1+it).$
Ramachandra, K
HAL, hal-01104287 / Harvested from HAL
Let $T\geq1000$ and $X = \exp(\log\log T/\log\log\log T)$. Consider any set $O$ of disjoint open intervals $I$ of length $1/X$, contained in the interval $T\leq t\leq T+e^X$. We prove in this paper, that $\vert\log\zeta(1+it)\vert\leq\varepsilon\log\log T$ in $O$ with the exception of $K$ intervals $I$, where $0<\varepsilon\leq1$ and $K$ depends only on $\varepsilon$.
Publié le : 1987-07-04
Classification:  alternate intervals,  zero-free regions,  L-function,  [MATH]Mathematics [math]
@article{hal-01104287,
     author = {Ramachandra, K},
     title = {A remark on $\zeta(1+it).$},
     journal = {HAL},
     volume = {1987},
     number = {0},
     year = {1987},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01104287}
}
Ramachandra, K. A remark on $\zeta(1+it).$. HAL, Tome 1987 (1987) no. 0, . http://gdmltest.u-ga.fr/item/hal-01104287/