On a question of Ramachandra
Montgomery, hugh L
HAL, hal-01104228 / Harvested from HAL
For each positive integer $k$, let $$a_k(n)=(\sum_p p^{-s})^k=\sum_{n=1}^{\infty} a_k(n)n^{-s},$$ where $\sigma={\rm Re}(s)>1$, and the sum on the left runs over all primes $p$. This paper is devoted to proving the following theorem: If $1/2<\sigma<1$, then $$\max_k(\sum_{n\leq N} a_k(n)^2n^{-2\sigma})^{1/2k}\approx (\log N)^{1-\sigma}/\log\log N$$ and $$(\sum_{n=1}^{\infty} a_k(n)^2n^{-2\sigma})^{1/2k} \approx k^{1-\sigma}/(\log k)^{\sigma}.$$ The constants implied by the $\approx$ sign may depend upon $\sigma$. This theorem has applications to the Riemann zeta function.
Publié le : 1982-07-04
Classification:  [MATH]Mathematics [math]
@article{hal-01104228,
     author = {Montgomery, hugh L},
     title = {On a question of Ramachandra},
     journal = {HAL},
     volume = {1982},
     number = {0},
     year = {1982},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-01104228}
}
Montgomery, hugh L. On a question of Ramachandra. HAL, Tome 1982 (1982) no. 0, . http://gdmltest.u-ga.fr/item/hal-01104228/