Multiple solutions to the Plateau problem for nonconstant mean curvature
Bethuel, Fabrice ; Rey, Olivier
HAL, hal-00943475 / Harvested from HAL
We prove the existence of at least two solutions to the Plateau problem for any curvature function H close enough, in L^∞-norm, to a nonzero constant H_0 such that ∣H_0∣.∣∣γ∣∣ <1, where ∣∣γ∣∣ denotes the L^∞-norm of the boundary condition γ.
Publié le : 1994-07-04
Classification:  Plateau problem,  Mean curvature,  Nonlinear elliptic PDEs,  Noncompact variational problems,  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
@article{hal-00943475,
     author = {Bethuel, Fabrice and Rey, Olivier},
     title = {Multiple solutions to the Plateau problem for nonconstant mean curvature},
     journal = {HAL},
     volume = {1994},
     number = {0},
     year = {1994},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00943475}
}
Bethuel, Fabrice; Rey, Olivier. Multiple solutions to the Plateau problem for nonconstant mean curvature. HAL, Tome 1994 (1994) no. 0, . http://gdmltest.u-ga.fr/item/hal-00943475/