Loading [MathJax]/extensions/MathZoom.js
Effective diffusion in vanishing viscosity
Campillo, Fabien ; Piatnitski, Andrey L.
HAL, hal-00924088 / Harvested from HAL
We study the asymptotic behavior of effective diffusion for singular perturbed elliptic operators with potential first order terms. Assuming that the potential is a random perturbation of a fixed periodic function and that this perturbation does not affect essentially the structure of the potential, we prove the exponential decay of the effective diffusion. Moreover, we establish its logarithmic asymptotics in terms of proper percolation level for the random potential.
Publié le : 2002-06-21
Classification:  homogenization,  effective diffusion,  singular perturbed operators,  logarithmic asymptotics,  random potential,  percolation theory,  [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
@article{hal-00924088,
     author = {Campillo, Fabien and Piatnitski, Andrey L.},
     title = {Effective diffusion in vanishing viscosity},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00924088}
}
Campillo, Fabien; Piatnitski, Andrey L. Effective diffusion in vanishing viscosity. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00924088/