Tensor products of C(X)-algebras over C(X)
Blanchard, Etienne
HAL, hal-00922902 / Harvested from HAL
Given a Hausdorff compact space $X$, we study the \mbox{${\rm C}^*$}-(semi)-norms on the algebraic tensor product $A\odot_{C(X)} B$ of two $C(X)$-algebras $A$ and $B$ over $C(X)$. In particular, if one of the two $C(X)$-algebras defines a continuous field of \mbox{${\rm C}^*$}-algebras over $X$, there exist minimal and maximal \mbox{${\rm C}^*$}-norms on $A\odot_{C(X)} B$ but there does not exist any \mbox{${\rm C}^*$}-norm on $A\odot_{C(X)} B$ in general.
Publié le : 1995-07-04
Classification:  C*-algebra continuous field,  Tensor product,  AMS classification: 46L05, 46M05,  [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA]
@article{hal-00922902,
     author = {Blanchard, Etienne},
     title = {Tensor products of C(X)-algebras over C(X)},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00922902}
}
Blanchard, Etienne. Tensor products of C(X)-algebras over C(X). HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00922902/