The coupled Seiberg-Witten equations, vortices and moduli spaces of stable pairs
Teleman, Andrei ; Okonek, Christian
HAL, hal-00881774 / Harvested from HAL
We introduce coupled Seiberg-Witten equations, and we prove, using a generalized vortex equation, that, for Kaehler surfaces, the moduli space of solutions of these equations can be identified with a moduli space of holomorphic stable pairs. In the rank 1 case, one recovers Witten's result identifying the space of irreducible monopoles with a moduli space of divisors. As application, we give a short proof of the fact that a rational surface cannot be diffeomorphic to a minimal surface of general type.
Publié le : 1995-12-05
Classification:  Seiberg-Witten equations,  non-abelian monopoles,  57R57,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG],  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00881774,
     author = {Teleman, Andrei and Okonek, Christian},
     title = {The coupled Seiberg-Witten equations, vortices and moduli spaces of stable pairs},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00881774}
}
Teleman, Andrei; Okonek, Christian. The coupled Seiberg-Witten equations, vortices and moduli spaces of stable pairs. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00881774/