We introduce coupled Seiberg-Witten equations, and we prove, using a generalized vortex equation, that, for Kaehler surfaces, the moduli space of solutions of these equations can be identified with a moduli space of holomorphic stable pairs. In the rank 1 case, one recovers Witten's result identifying the space of irreducible monopoles with a moduli space of divisors. As application, we give a short proof of the fact that a rational surface cannot be diffeomorphic to a minimal surface of general type.