Seiberg-Witten invariants for manifolds with b_+=1, and the universal wall crossing formula
Teleman, Andrei ; Okonek, Christian
HAL, hal-00881771 / Harvested from HAL
In this paper we describe the Seiberg-Witten invariants, which have been introduced by Witten, for manifolds with b_+=1. In this case the invariants depend on a chamber structure, and there exists a universal wall crossing formula. For every Kähler surface with p_g=0 and q=0, these invariants are non-trivial for all Spin^c(4)-structures of non-negative index.
Publié le : 1996-12-05
Classification:  Seiberg-Witten invariants,  complex surfaces,  MSC 57R57, 14J80, 14J26,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG],  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00881771,
     author = {Teleman, Andrei and Okonek, Christian},
     title = {Seiberg-Witten invariants for manifolds with b\_+=1, and the universal wall crossing formula},
     journal = {HAL},
     volume = {1996},
     number = {0},
     year = {1996},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00881771}
}
Teleman, Andrei; Okonek, Christian. Seiberg-Witten invariants for manifolds with b_+=1, and the universal wall crossing formula. HAL, Tome 1996 (1996) no. 0, . http://gdmltest.u-ga.fr/item/hal-00881771/