Non-abelian Seiberg-Witten theory and stable oriented pairs
Teleman, Andrei
HAL, hal-00881769 / Harvested from HAL
The ai of this paper is to develop a systematic theory of non-abelian Seiberg-Witten equations. The equations we introduce and study are associated with a Spin^G(4)-structure, where G is a closed subgroup of the unitary group U(V) containing the involution -id_V
Publié le : 1997-06-05
Classification:  stable pairs,  Seiberg-Witten theory,  PU(2)-monopoles,  MSC 14D20, 32G13, 53C07,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG],  [MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV],  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00881769,
     author = {Teleman, Andrei},
     title = {Non-abelian Seiberg-Witten theory and stable oriented pairs},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00881769}
}
Teleman, Andrei. Non-abelian Seiberg-Witten theory and stable oriented pairs. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00881769/