On helicoidal ends of minimal surfaces
Romon, Pascal
HAL, hal-00860937 / Harvested from HAL
This article analyzes the behaviour of helicoidal ends of properly embedded minimal surfaces, namely properly embedded infinite total curvature minimal annuli of parabolic type, satisfying a growth condition on the curvature via the Gauss map, and a geometric transversality condition. Then we show that embeddedness forces the end to be asymptotic either to a plane, or a helicoid or a spiraling helicoid. In all three cases, the Gauss map can be described in very simple terms. Finally this local result yields a global corollary stating the rigidity of embedded minimal helicoids.
Publié le : 1994-07-05
Classification:  Minimal surface,  infinite total curvature,  annular end,  helicoid,  embeddedness,  essential singularity,  MSC 53A10,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
@article{hal-00860937,
     author = {Romon, Pascal},
     title = {On helicoidal ends of minimal surfaces},
     journal = {HAL},
     volume = {1994},
     number = {0},
     year = {1994},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00860937}
}
Romon, Pascal. On helicoidal ends of minimal surfaces. HAL, Tome 1994 (1994) no. 0, . http://gdmltest.u-ga.fr/item/hal-00860937/