Loading [MathJax]/extensions/MathZoom.js
Convex cones and SAGBI bases of permutation invariants
Thiéry, Nicolas M. ; Thomassé, Stéphan
HAL, hal-00632279 / Harvested from HAL
Let G be a permutation group acting on {1,...,n}, and < be any admissible term order on the polynomial ring K[x_1,...,x_n]. We prove that the invariant ring K[x_1,...,x_n]^G of G has a finite SAGBI basis if, and only if, G is generated by reflections.
Publié le : 2002-04-15
Classification:  [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC],  [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
@article{hal-00632279,
     author = {Thi\'ery, Nicolas M. and Thomass\'e, St\'ephan},
     title = {Convex cones and SAGBI bases of permutation invariants},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00632279}
}
Thiéry, Nicolas M.; Thomassé, Stéphan. Convex cones and SAGBI bases of permutation invariants. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00632279/