On representations of cyclotomic Hecke algebras
Poulain D'Andecy, Loic ; Oleg, Ogievetsky
HAL, hal-00620360 / Harvested from HAL
An approach, based on Jucys-Murphy elements, to the representation theory of cyclotomic Hecke algebras is developed. The maximality (in the cyclotomic Hecke algebra) of the set of the Jucys-Murphy elements is established. A basis of the cyclotomic Hecke algebra is suggested; this basis is used to establish the flatness of the deformation without using the representation theory.
Publié le : 2011-07-05
Classification:  Hecke algebras,  Jucys-Murphy elements,  complex reflection groups,  flat deformations,  Young diagrams,  Young tableaux,  [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph],  [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph],  [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT],  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
@article{hal-00620360,
     author = {Poulain D'Andecy, Loic and Oleg, Ogievetsky},
     title = {On representations of cyclotomic Hecke algebras},
     journal = {HAL},
     volume = {2011},
     number = {0},
     year = {2011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00620360}
}
Poulain D'Andecy, Loic; Oleg, Ogievetsky. On representations of cyclotomic Hecke algebras. HAL, Tome 2011 (2011) no. 0, . http://gdmltest.u-ga.fr/item/hal-00620360/