Set of invariant measures of generalized Toeplitz subshifts
Isabel Cortez, María ; Petite, Samuel
HAL, hal-00602238 / Harvested from HAL
We show that for every metrizable Choquet simplex $K$ and for every group $G$, which is amenable, finitely generated and residually finite, there exists a Toeplitz $G$-subshift whose set of shift-invariant probability measures is affine homeomorphic to $K$. Furthermore, we get that for every integer $d\geq 1$ and every minimal Cantor system $(X,T)$ whose dimension group is divisible, there exists a minimal Toeplitz ${\mathbb Z}^d$-subshift which is topologically orbit equivalent to $(X,T)$.
Publié le : 2011-06-21
Classification:  orbit equivalence.,  Toeplitz subshift,  discrete group actions,  invariant measures,  orbit equivalence,  Primary: 37B10; Secondary: 37B05.,  [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
@article{hal-00602238,
     author = {Isabel Cortez, Mar\'\i a and Petite, Samuel},
     title = {Set of invariant measures of generalized Toeplitz subshifts},
     journal = {HAL},
     volume = {2011},
     number = {0},
     year = {2011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00602238}
}
Isabel Cortez, María; Petite, Samuel. Set of invariant measures of generalized Toeplitz subshifts. HAL, Tome 2011 (2011) no. 0, . http://gdmltest.u-ga.fr/item/hal-00602238/