Loading [MathJax]/extensions/MathZoom.js
A constrained approximation problem arising in parameter identification
Jacob, Birgit ; Leblond, Juliette ; Marmorat, Jean-Paul ; Partington, Jonathan R.
HAL, hal-00504824 / Harvested from HAL
We pose and solve an extremal problem in the Hardy class H-2 of the disc, involving the best approximation of a function on a subarc of the circle by a H-2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of such a best approximant, and the method is illustrated by a numerical example. The whole problem is motivated by boundary parameter identification problems arising in non-destructive control
Publié le : 2002-08-05
Classification:  Laplace's equation,  Parameter identification,  Inverse problem,  Constrained approximation,  Extremal problem,  [MATH.APPL]Mathematics [math]/domain_math.appl
@article{hal-00504824,
     author = {Jacob, Birgit and Leblond, Juliette and Marmorat, Jean-Paul and Partington, Jonathan R.},
     title = {A constrained approximation problem arising in parameter identification},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00504824}
}
Jacob, Birgit; Leblond, Juliette; Marmorat, Jean-Paul; Partington, Jonathan R. A constrained approximation problem arising in parameter identification. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00504824/