Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras
Hadjiivanov, L. K. ; Isaev, A. P. ; Ogievetsky, O. V. ; Pyatov, P. N. ; Todorov, I. T.
HAL, hal-00473317 / Harvested from HAL
The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation defines an R-matrix R(p), where $p$ stands for a set of mutually commuting variables. A family of SL(n)-type solutions of this equation provides a new realization of the Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quantum determinant and compute the inverse quantum matrix for matrix algebras of the type R(p) a_1 a_2 = a_1 a_2 R. It is pointed out that such a quantum matrix algebra arises in the operator realization of the chiral zero modes of the WZNW model.
Publié le : 1997-12-10
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA],  [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
@article{hal-00473317,
     author = {Hadjiivanov, L. K. and Isaev, A. P. and Ogievetsky, O. V. and Pyatov, P. N. and Todorov, I. T.},
     title = {Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00473317}
}
Hadjiivanov, L. K.; Isaev, A. P.; Ogievetsky, O. V.; Pyatov, P. N.; Todorov, I. T. Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00473317/