The paper is a contribution to the conjecture of Kobayashi that the complement of a generic curve in the projective plane is hyperbolic, provided the degree is at least five. Previously the authors treated the cases of two quadrics and a line and three quadrics. The main results are Let C be the union of three curves in P_2 whose degrees are at least two, one of which is at least three. Then for generic such configurations the complement of C is hyperbolic and hyperbolically embedded. The same statement holds for complements of curves in generic hypersurfaces X of degree at least five and curves which are intersections of X with hypersurfaces of degree at least five. Furthermore results are shown for curves on surfaces with picard number one.