Dualité tannakienne pour les quasi-groupoïdes quantiques
Bruguieres, Alain
HAL, hal-00463051 / Harvested from HAL
This paper is the sequel of a previous one [2] where we extended the Tannaka-Krein duality results to the non-commutative situation, i.e. to 'quantum groupoids'. Here we extend those results to the quasi-monoidal situation, corresponding to 'quasi-quantum groupoids' as defined in [3] ('quasi-' stands for quasi-associativity a la Drinfeld). More precisely, let B be a commutative algebra over a field k. Given a tensor autonomous category τ,. we define the notion of a quasi-fibre functor ω:τ-proj B (here, 'quasi-' means without compatibility to associativity constraints). On the other hand, we define the notion of a transitive quasi-quantum groupoid over B. We then show that the category of tensor autonomous categories equipped with a quasi-fibre functor (with suitable morphisms), is equivalent to the category of transitive quasi-quantum groupoids (5.4.2)
Publié le : 1997-07-05
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
@article{hal-00463051,
     author = {Bruguieres, Alain},
     title = {Dualit\'e tannakienne pour les quasi-groupo\"\i des quantiques},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-00463051}
}
Bruguieres, Alain. Dualité tannakienne pour les quasi-groupoïdes quantiques. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00463051/