Théorie tannakienne non commutative
Bruguieres, Alain
HAL, hal-00463050 / Harvested from HAL
Inspired by a recent paper by Deligne [2], we extend the Tannaka-Krein duility results (over a field) to the non-commutative situation. To be precise, we establish a 1-1 corresponde:ice between 'tensorial autonomous categories' equipped with a 'fibre functor' (i. e. tannakian categories without the commutativity condition on the tensor product), and 'quantum groupoids' (as defined by Maltsiniotis, [9]) which are 'transitive' (7.1.). When the base field is perfect, a quantum groupoid over Spec B is transitive iff it is projective and faithfully fiat over B⊗k B. Moreover, the fibre functor is unique up to 'quantum isomorphism' (7.6.). Actually, we show Tannaka-Krein duality results in the more general setting where there is no monoidal structure on the category (and the functor); the algebraic object corresponding to such a category is a 'semi-transitive' coalgebroid (5.2. and 5.8.).
Publié le : 1994-07-05
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
@article{hal-00463050,
     author = {Bruguieres, Alain},
     title = {Th\'eorie tannakienne non commutative},
     journal = {HAL},
     volume = {1994},
     number = {0},
     year = {1994},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-00463050}
}
Bruguieres, Alain. Théorie tannakienne non commutative. HAL, Tome 1994 (1994) no. 0, . http://gdmltest.u-ga.fr/item/hal-00463050/