Décomposition de l'énergie par niveau de potentiel
Bouleau, Nicolas
HAL, hal-00448731 / Harvested from HAL
Several extensions of the following classical property are studied : Let m be the Lebesgue measure on $R^d$, and let u be in $L^2_{loc}(R^d)$ such that its partial derivatives in the sense of distributions be in $L^2(R^d)$. Then the image of the measure $grad^2 u.m$ is absolutely continuous with respect to Lebesgue measure on R.
Publié le : 1983-06-20
Classification:  energy image density property,  occupation density,  local time,  Dirichlet form,  MSC 60Hxx 46Fxx 31-XX,  [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA],  [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
@article{hal-00448731,
     author = {Bouleau, Nicolas},
     title = {D\'ecomposition de l'\'energie par niveau de potentiel},
     journal = {HAL},
     volume = {1983},
     number = {0},
     year = {1983},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-00448731}
}
Bouleau, Nicolas. Décomposition de l'énergie par niveau de potentiel. HAL, Tome 1983 (1983) no. 0, . http://gdmltest.u-ga.fr/item/hal-00448731/