Uniform bounds for the exponential moments of the maximum of Dyck paths
Marckert, Jean-François ; Khorunzhiy, Oleksiy
HAL, hal-00410386 / Harvested from HAL
Let $D_{2n}$ be a Dyck path chosen uniformly in the set of Dyck paths with $2n$ steps. The aim of this note is to show that for any $\lambda>0$ the sequence $`E\l(\exp\l(\lambda (2n)^{-1/2}\max D_{2n}\r)\r)$ converges, and then is bounded uniformly in $n$. The uniform bound justifies an ``hypothesis'' used in the literature, for proving certain estimates of high moments of large random matrices.
Publié le : 2009-07-05
Classification:  Dyck paths,  Bernoulli bridge,  simple random walks,  random matrices,  AMS: 60C05, 60G70, 60F99,  [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
@article{hal-00410386,
     author = {Marckert, Jean-Fran\c cois and Khorunzhiy, Oleksiy},
     title = {Uniform bounds for the exponential moments of the maximum of Dyck paths},
     journal = {HAL},
     volume = {2009},
     number = {0},
     year = {2009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00410386}
}
Marckert, Jean-François; Khorunzhiy, Oleksiy. Uniform bounds for the exponential moments of the maximum of Dyck paths. HAL, Tome 2009 (2009) no. 0, . http://gdmltest.u-ga.fr/item/hal-00410386/