On Fibonacci Knots
Koseleff, Pierre-Vincent ; Pecker, Daniel
HAL, hal-00408736 / Harvested from HAL
We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo 2. We deduce that, when $ n \not\equiv 0 \Mod 4$ and $(n,j) \neq (3,3),$ the Fibonacci knot $ \cF _j^{(n)} $ is not a Lissajous knot.
Publié le : 2010-05-05
Classification:  Fibonacci knots,  continued fractions,  Fibonacci polynomials,  [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
@article{hal-00408736,
     author = {Koseleff, Pierre-Vincent and Pecker, Daniel},
     title = {On Fibonacci Knots},
     journal = {HAL},
     volume = {2010},
     number = {0},
     year = {2010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00408736}
}
Koseleff, Pierre-Vincent; Pecker, Daniel. On Fibonacci Knots. HAL, Tome 2010 (2010) no. 0, . http://gdmltest.u-ga.fr/item/hal-00408736/