Préimages d'espaces héréditairement de Baire
Bouziad, Ahmed
HAL, hal-00373446 / Harvested from HAL
A hereditarily Baire space is a topological space having the property that each of its closed non-empty subspaces is of second category. J. M. Aarts and D. J. Lutzer [Proc. Amer. Math. Soc. 38 (1973), 198--200; MR0309056 (46 #8167)] raised the question of whether the Cartesian product of a compact space $X$ with a hereditarily Baire space $Y$ must remain hereditarily reflexive. The present paper establishes this conjecture when $X$ is Čech complete and $Y$ is Hausdorff, regular, and the image of a metrizable space under a closed-continuous map. The last condition can be replaced by assuming that each closed non-empty subset of $Y$ has a point with a countable (relative) neighborhood base
Publié le : 1997-07-05
Classification:  Hereditarily Baire space,  product space,  54E52,  [MATH.MATH-GN]Mathematics [math]/General Topology [math.GN]
@article{hal-00373446,
     author = {Bouziad, Ahmed},
     title = {Pr\'eimages d'espaces h\'er\'editairement de Baire},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00373446}
}
Bouziad, Ahmed. Préimages d'espaces héréditairement de Baire. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00373446/